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Abstract. A full-potential band structure calculation, within the density functional theory and
the local density approximation, has been performed for the hexagonal close-packed polytypes
2H, 4H and 6H of Si. Calculated lattice constants are found to be in good agreement with
experimental values. Energy band gap, crystal-field splitting and spin–orbit splitting have been
determined and, furthermore, the effective masses have been calculated for the lowest conduction
band and the two uppermost valence bands. Throughout the paper, comparison is made with
corresponding polytypes of SiC and with diamond cubic Si.

1. Introduction

The ability of semiconductor materials to crystallize in different polytypes, either by phase
transition or at growth, can commercially be utilized in semiconductor device technology.
For instance, polycrystalline Si films are important elements in integrated circuit devices.
In these thin films, the twinning deformations cause formation of hexagonal structures
[1, 2]. Furthermore, utilizing the techniques of chemical vapour deposition, whiskers with
single-crystalline hexagonal structures can be grown [3]. Experimentally, the formations of
hexagonal Si have been the subject of investigations [1–6], but theoretical information is
still lacking about the basic properties of these polytypes.

In the present work, we have performed a relativistic band structure calculation of
(diamond) hexagonal close-packed 2H-, 4H- and 6H-Si (space group D4

6h); the polytype
notation is according to Knippenberg [7]. The calculation was based on the density
functional theory (DFT), applying the local density approximation (LDA) to describe the
electron–electron interaction. Our geometric optimization of the total energy results in lattice
constants which confirm available experimental values. From the calculated electronic band
structures the energy band gaps, crystal-field splittings and spin–orbit splittings have been
determined and the energy dispersions of the two uppermost valence bands are found to
be very similar between the three polytypes. Moreover, we present the effective electron
masses of the lowest conduction band and the effective hole masses of the two uppermost
valence bands. The above mentioned fundamental quantities are important in investigations
and analyses of the electrical and optical properties of these polytypes.

Comparisons with calculations of diamond (cubic) Si, with well known experimental
values, are presented, indicating the validity of the calculations for the hexagonal polytypes.
We also compare results to corresponding calculations of SiC in [8] and [9], in order
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to illustrate electronic properties of hexagonal structures. (SiC can easily be crystallized
in several polytypes and represents therefore a material of great interest for studies of
polytypism in semiconductors.)

2. Method

The band structure calculation was based on the LDA to the DFT [10], adopting the full-
potential linearized augmented plane wave method [11]. A software program [12], based
on the scalar–relativistic approximation, with the LDA exchange–correlation potential of
the reparametrization by Perdew and Wang [13] of Ceperley–Alder data, was used. The
DFT–LDA is well known to underestimate the energy band gap, but it is believed that most
of this error is a constant shift in energy (i.e., independent of wave vectork) and, thus, the
curvatures of the valence and conduction bands should be less affected by this inaccurate
treatment of the exchange–correlation effects.

In the self-consistent field calculation the basis set for the Hamiltonian matrix consisted
in the atomic regions of spherical harmonics with azimuthal quantum numberl 6 12 and
in the interstitial region of about 420, 850 and 1250 plane waves for the polytypes 2H,
4H and 6H, respectively. Thek-space matrices consisted of 32k-points per irreducible
part of the Brillouin zone and the charge density was constructed using plane waves in the
interstitial region and spherical harmonics with azimuthal quantum numberl 6 6 in the
atomic regions. The total energy was calculated according to Weinertet al [14].

The spin–orbit interaction was not included in the self-consistent field loop, because of
its minor influence on the total energy and on the charge distribution around the relatively
light Si atoms. In calculation of the eigenvalues the interaction was treated within the
spherical approximation, adopting the second variational method applied to the one-particle
eigenfunctions from the scalar–relativistic calculation, whereas in determination of the
symmetry of the eigenfunctions a fully relativistic calculation was performed. The notation
of the representations used in this paper is from Kosteret al [15].

3. Electronic band structures

The lattice constants were obtained by minimizing the total energy with respect to changes
in the size of the unit cell, first by varying the parametersa and c with one and the
same volume, whereupon the volume was varied keeping the ratioa/c fixed. The result,
presented in table 1, shows good agreement between calculations and experiments. For
example, Wentorf and Kasper [4] achieved, in high-pressure experiments, 2H-Si fragments
with lattice constantsa = 3.80 Å and c = 6.28 Å and these values together with lattice
constants obtained by Eremenko and Nikitenko [5] (a = 3.86 Å and c = 6.31 Å) agree
with the present calculated values of 2H-Si:a = 3.815 Å and c = 6.283 Å. Miyamoto and
Hirata [3] have grown crystalline whiskers of 6H-Si witha = 3.84 Å and c = 18.59 Å;
values which are reproduced in our calculations:a = 3.821Å andc = 18.773Å. Moreover,
Hendrikset al [6] proposed the valuesa = 3.84 Å and 2c/(ap) = 1.633 (p is the number of
bilayers: 2, 4 and 6 for 2H-, 4H- and 6H-Si, respectively) to explain their x-ray diffraction
spectra of implanted and annealed silicon films. This was later confirmed by Cerva using
high-resolution electron microscopy [2]. Present calculated values of the ratio are 1.647,
1.637 and 1.638. In order to ratify the validity of the calculated lattice constants, we also
present in table 1 the calculated lattice constant of diamond Si which is within 0.4% of the
experimental value.
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Table 1. Lattice constantsa andc obtained from a geometric optimization, which also provided
the bulk modulusB. Since the present DFT–LDA calculation produces incorrect energy band
gapEg , a rough estimate of the band gapEg +1g has been made, where1g = 0.73 eV is the
energy difference between the measured and calculated band gap of diamond Si. The valence
band crystal-field splitting1cf and spin–orbit splitting1so are believed to be calculated more
correctly. For comparison, calculated values of diamond (cubic) Si are also presented.

2H-Si 4H-Si 6H-Si Diamond Si

a, c (Å) 3.815, 6.283 3.821, 12.510 3.821, 18.773 5.451
a, c (Å) exp.a 3.80, 6.28 3.84, 12.54 3.84, 18.59 5.431
B (Mbar) 0.99 0.93 0.95 0.95
B (Mbar) exp.a 0.99
Eg (eV) 0.26 0.40 0.43 0.44
Eg +1g (eV) 0.99 1.13 1.16 1.17
Eg (eV) exp.a 1.17
1cf (meV) 300 144 102
1so (meV) 33.7 30.1 28.0 50.1
1so (meV) exp.a 44.1

a [4], [6], [3] and [16] for 2H-, 4H-, 6H-Si and diamond Si, respectively.

With optimized lattice constants, the total energy per atom was found to be similar
for the polytypes. The differences in energy per atom between diamond Si and the three
hexagonal polytypes were calculated to be 23, 32 and 34 meV for 2H-, 4H- and 6H-Si,
respectively. This confirms a reported calculated value of 16 meV for 2H-Si [17], where the
authors used an ideal axial ratio of the lattice constants: 2c/(ap) = √8/3≈ 1.633. Also the
bulk moduli of the cubic and hexagonal polytypes are comparable, about 0.93–0.99 Mbar
(see table 1).

Having established the geometric structure for the polytypes, the electronic band
structures were calculated along the symmetry directions. The Brillouin zone and the
labelling of the symmetry points can be found in [9]. Resulting band structures are shown
in figure 1 and one can observe that there are evident similarities in the band structures
between the three polytypes, both in the valence and in the conduction bands, especially
between 4H- and 6H-Si. (This is true also for SiC.) One significant difference between
2H-Si and the other two hexagonal polytypes is that the location of the lowest conduction
band minimum is at the M point for 2H-Si (with M+5 representation), whereas both 4H- and
6H-Si have their minima along the0M line (both with65 representations). Thus, 2H-Si
has three and 4H- and 6H-Si have six equivalent minima.

The utilized DFT–LDA method produces an incorrect band gap value of diamond Si; the
error is1g = 0.73 eV (see table 1), and one expects that also the calculated band gaps of the
hexagonal polytypes are underestimated. Nevertheless, in most semiconducting materials
(like diamond Si as well as the cubic and hexagonal polytypes of SiC) the calculated location
of the minima agrees with experiments and it is believed that the major part of the error in
the band gap is a constant energy shift, which does not influence the location of the minimum
or the curvature of the bands. Moreover, in SiC the errors in calculated band gaps are very
similar between the cubic and the hexagonal polytypes; the differences between measured
and calculated band gaps in SiC are 1.10, 1.22, 1.12 and 1.13 eV for the polytypes 3C, 2H,
4H and 6H [9]. (This is consistent with the fact that the SiC polytypes have comparable
dielectric constants and charge densities). Therefore, a preliminary estimate of the band
gaps should be to use the energy shift of diamond Si also for the hexagonal polytypes. The
resulting band gap values then becomeEg+1g = 0.99, 1.13 and 1.16 eV for 2H-, 4H- and
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Figure 1. Energy bands for (a) 2H-Si, (b) 4H-Si and (c) 6H-Si, where the energies are referenced
to the top of the valence band.

6H-Si, respectively. In contrast to the SiC polytypes, 2H-Si has the smallest and diamond
Si has the largest band gap.

The crystal-field splitting1cf , which is obtained as the energy difference between the
two uppermost valence bands (0+5 representations) and the third uppermost valence band
(0+1 representation) excluding the spin–orbit interaction, decreases as the number of bilayers
in the unit cell is increased; the values of1cf are 300, 144 and 102 meV for 2H-, 4H-
and 6H-Si. This reduction of the crystal-field splitting as a function of the size of the
unit cell is in accordance with results of the hexagonal SiC polytypes and moreover, the
ratios of the splitting energies between the polytypes are very similar in Si and SiC; for
Si 12H-Si

cf /14H-Si
cf = 2.1 and14H-Si

cf /16H-Si
cf = 1.4 and the corresponding values for SiC

are 2.2 and 1.4. There are also similarities between Si and SiC in the effects of the spin–
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orbit coupling. Including spin–orbit interaction, the two uppermost valence bands are split
into an uppermost band with0+9 representation and a second uppermost band with0+7
representation. The third uppermost valence band is essentially unaffected by the spin–
orbit interaction, now having0+7 representation. Furthermore, in both Si and SiC crystals,
the spin–orbit splitting energies1so are similar for all three hexagonal polytypes (about
30 meV for Si and about 8.5 meV for SiC) and the ratios1hexagonal

so /1diamond
so are all

between 0.56 and 0.67. Hopfield [18] has derived that this ratio should be6 2/3 ≈ 0.67;
the equals sign holds for infinitely large crystal-field splitting and one can observe that
12H-Si
so /1diamond-Si

so = 0.67, noting that 2H-Si has the largest crystal-field splitting.

4. Effective masses

The employed DFT–LDA calculation has been demonstrated to accurately reproduce the
curvature of the lowest conduction band minimum as well as the valence band maximum of
diamond Si [8]. In 2H-Si, the lowest conduction band minimum was found to be parabolic
in the three principal directions, but in both 4H- and 6H-Si, the lowest conduction band
was found to have a very non-parabolic, double-well-like minimum, just as in 6H-SiC [9].
One distinct difference is that in 6H-SiC the minimum is along the ML line, whereas in
4H- and 6H-Si the minima are along the0M line. The double-well structures (also called
camel’s back structures) can be parametrized with good accuracy according to the energy
dispersion of Lawaetz [19]:

Ec1
(
kx
) = Ec1(kM)+ 1

2
+ A2k2

x −
√
12

4
+ P 2k2

x (1)

wherekM is the wave vector at the M point,kx is the wave vector in the corresponding
0M direction and1, A andP are fitting parameters. (Originally,1 described the energy
difference between the two lowest bands, but here it is employed as a fitting parameter.)
In the directions parallel to MK and ML, however, the minima of 4H- and 6H-Si were
found to be essentially parabolic. From the second derivative of the energy dispersion with
respect to the wave vector, we determined the effective electron masses. The resulting fitting
parameters of the camel’s back structures and the values of the effective electron masses are
presented in table 2. The noticeable large massmM0 = 2.60m0 in 6H-Si is a consequence
of the very flat shape of its camel’s back structure. The minimum of 6H-Si is located
87% out from0 towards the M point and the energy difference between the minimum and
the energy at the M point is only 4.6 meV. 4H-Si has a more pronounced camel’s back
structure; the minimum is located 92% from0 towards M and the corresponding energy
difference is 6.0 meV, thereby resulting in a smaller value ofmM0 = 0.98m0.

Table 2. Camel’s back structure parameters1, A andP (see equation (1)) and the effective
electron masses for the lowest conduction band minimum. The energy difference between the
minimum and the energy at the M point is 6.0 meV for 4H-Si and 4.5 meV for 6H-Si. The
subscripts on the masses indicate which directions in the Brillouin zone the mass components
refer to.

1 (eV) A (Å (eV)1/2) P (Å eV) mM0 (m0) m‖MK (m0) m‖ML (m0)

2H-Si 1.05 0.11 1.09
4H-Si 0.160 2.690 1.303 0.98 0.12 1.37
6H-Si 2.257 2.984 4.690 2.60 0.12 1.55
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Parametrization of the two highest valence bands at the0 point can be carried out
utilizing the following expression, which is valid for wurtzite structures and if the crystal-
field splitting is sufficiently large [9]:

Eν1,ν2(k) = −1so

2
+ h̄2

2m0

(
ck2
‖ + dk2

⊥ ±
√(

m01so

h̄2

)2

+ (d ′′k2
⊥
)2
)

(2)

from which the longitudinal (‖) and transverse (⊥) effective hole masses for the two highest
bands are obtained as−m0/c and−m0/d, respectively. (The two uppermost valence bands
have equal effective hole masses within this approximation.) The fitting parameters and the
effective hole masses for the three polytypes are presented in table 3 and the parameters
demonstrate that the polytypes have similar valence band curvatures around the0 point.

Table 3. Valence band parametersc, d andd ′′ and transverse (⊥) and longitudinal (‖) effective
hole masses for the two uppermost valence bands (see equation (2)).

c d d ′′ m⊥ (m0) m‖ (m0)

2H-Si −1.83 −4.70 2.94 0.21 0.55
4H-Si −1.72 −4.52 3.25 0.22 0.58
6H-Si −1.78 −4.35 3.20 0.23 0.56

5. Summary

A DFT–LDA band structure calculation has been performed for 2H-, 4H- and 6H-Si, using
the exchange–correlation potential of Perdew and Wang; the potential accurately describes
the band curvatures in diamond cubic Si. From a geometric optimization the lattice constants
were determined to bea = 3.815, 3.821 and 3.821̊A and c = 6.283, 12.510 and 18.773̊A
for 2H-, 4H- and 6H-Si, respectively. These calculated values confirm available measured
lattice constants.

By comparing the electronic band structure of the three polytypes, one sees evident
similarities, especially in the valence band structures. There are also strong correspondences
in the valence bands between hexagonal polytypes of Si and of SiC, just as different face-
centred cubic semiconducting materials show similarities in their valence band structures.
All three Si polytypes have indirect band gaps; in 2H-Si the minimum is located at the M
point and in 4H- and 6H-Si the minima are along the6 (= 0M) line. The estimated values
of the band gap are 0.99, 1.13 and 1.16 eV for 2H-, 4H- and 6H-Si, respectively.
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